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ABSTRACT

The DARTS approach manifests the advantages of relaxing
the discrete problem of network architecture search (NAS) to
the continuous domain such that network weights and architec-
ture parameters can be optimized properly. However, it falls
short in providing a justifiable and reliable solution for de-
ciding the target architecture. In particular, the design choice
of a certain operation at each layer/edge is determined with-
out considering the distribution of operations over the overall
architecture or even the neighboring layers. Our method ex-
plores such dependencies from the viewpoint of maximum
a posterior (MAP) estimation. The consideration takes ac-
count of both local and global information by learning tran-
sition probabilities of network operations while enabling a
greedy scheme to uncover a MAP estimate of optimal target
architecture. The experiments show that our method achieves
state-of-the-art results on popular benchmark datasets and
also can be conveniently plugged into DARTS-related tech-
niques to boost their performance. Our code is available at
https://github.com/MAP-DARTS/MAP-DARTS.

Index Terms— Neural Architecture Search, AutoML,
Computer Vision, Deep Learning

1. INTRODUCTION

Neural architecture search (NAS) has attracted much attention
as a new paradigm for automatic design of network models.
The exploration has mostly centered around computer vision
tasks, including image classification [1], object detection [2]
and semantic segmentation [3].

A common drawback of most existing NAS algorithms is
that the performances of their resulting networks could vary
considerably and it indeed takes several runs to uncover a good
architecture. Such inconsistency could be greatly mitigated
if a NAS technique is blessed with a rough idea of knowing
where to look for promising candidates in the search space.
Radosavovic et al. [4] propose designing network design space
to discover a subspace with a high concentration of good
models among the original layer-based space. They propose to
refine large design space by manually invoking restrictions to
improve the space quality, such as sharing bottleneck ratio and
increasing stage width. However, it would become laborious
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Fig. 1: Illustration of a cell-based search space and the corre-
sponding directed acyclic graph (DAG): The operation from
the intermediate node i to node j can be seen as a vertex
v(i,j)in the dependency graph G′. Note that each node in G
is plotted as a box, while in G′ as a circle. The transition ma-
trix contains the knowledge that some operations have higher
probability to co-occur, such as the human-design models.

to manually find intuitive induction to pose restrictions in cell-
based search space, due to its complicated topology compared
to layer-based search space. We instead propose to focus
on constructing proper DARTS priors to guide the automatic
network design.

Motivated by the observation that there exists clear patterns
between consecutive operations in human-designed models
[5, 6], our approach explicitly encodes the operation-level
priors in the training. Specifically, we consider an arbitrary
pair of adjacent directed edges (in a one-shot supernet) as
a "transition" from the operation on the leading edge to the
which on the following edge. Therefore, we construct the
"dependency graph", in which we can easily incorporate
operations prior information. We illustrate our idea in Figure 1.
The nodes of the dependency graph correspond to architecture
weights on the original supernet and the edges represent
transition matrices, each of which encodes the dependencies
between operations of consecutive nodes.

https://github.com/MAP-DARTS/MAP-DARTS


We introduce a new NAS formulation that the maximum
a posteriori (MAP) reasoning is incorporated into both the
optimization and search phases. It works on a dependency
graph of network operations, which is constructed from the
coupled DARTS graph. The MAP estimate is obtained by lo-
cally evaluating a node-wise posterior probability for choosing
a specific operation and by globally estimating the likelihood
of a resulting architecture. The design leads to a greedy k-best
algorithm, which implicitly relies on message passing driven
by the learned transition probabilities. A novel use of our
method is to leverage the above-described priors to regularize
the learning of transition matrices, which greatly improves the
reliability of our NAS technique. The posterior probabilities
from the MAP formulation can be exploited to design a top-k
greedy algorithm to reliably and effectively uncover the target
architecture network. As a result, our method yields satisfac-
tory performance on popular benchmark datasets, and also
can be conveniently applied to improve other DARTS-based
methods.

2. OUR METHOD

We briefly describe the basic concept of DARTS and then de-
tail the proposed MAP formulation. The focal discussion is
to justify that the effectiveness of our method can be greatly
boosted by exploring a useful prior of learning operation tran-
sition matrices from good neural network architectures.

2.1. MAP-DARTS

The DARTS graph G illustrated in Figure 1 indeed induces a
one-shot supernet [3] of the cell level. Besides the coupling
issue of sharing parameters α(i,j) across the numerous net-
work architectures embodied in the one-shot graph, recent
research efforts [7] have pointed out that the DARTS optimiza-
tion often tends to favor strong paths and result in nonuniform
exploration over all feasible architectures. Furthermore, its
strategy to decide the final cell architecture is locally and inde-
pendently determined by choosing the strongest operation of
each edge. The scheme is counter-intuitive in that the decision
on o∗(i,j) inherently depends on what operations have already
been included in those preceding edges. To tackle all these
challenging issues, we propose a new NAS formulation that the
maximum a posteriori (MAP) reasoning is incorporated into
both the optimization and search phases to yield an improved
DARTS framework, named as MAP-DARTS.

Rather than solely working on the graph G of one-shot
supernet, our method also constructs an auxiliary graph G′

whose nodes {vjk} correspond to directed edges (j, k) in G.
Note that vjk will be used to denote not only the corresponding
node in G′ but also the underlying random variable. The
probability of vjk = o ∈ O is expressed by

pjko = P{vjk = o | o ∈ O} (1)

and pjk = (pjko1 , p
jk
o2 , . . . , p

jk
oC )

ᵀ is used to denote the proba-
bility distribution of all the network operations at node vjk.
In addition, there exists a directed edge (ij, jk) from vij to
vjk in G′ if and only if the two corresponding directed edges
(i, j) and (j, k) are present in G. In this case, vij is a parent
node of vjk, whose set of ancestor nodes in G′ will be denoted
hereafter as V jk. In MAP-DARTS, the decision of assigning a
particular operation o ∈ O to vjk can be made only until all an-
cestors in V jk have completed the operation assignment. That
is, the decision explores the inherent dependency of operations
from V jk and can be achieved by evaluating the node-wise
posterior probability.

o∗jk = arg max
o∈O

P (vjk | V jk = ojk, D) (2)

where D is the underlying training data and the expression
V jk = ojk symbolizes the operation assignment among the
ancestor nodes of vjk. The proposed method first learns the
node-wise transition matrices of network operations, or adopts
pre-trained priors of transition matrices, and then seeks a max-
imum a posteriori (MAP) estimate of the optimal architecture
based on (2).

Let T ijk be the matrix of transition probabilities between
all possible operations of nodes vij and vjk where (ij, jk) is
an directed edge in G′. Then T ijk can be written as

T ijk =


T ijk
o1,o1 T ijk

o1,o2 · · · T ijk
o1,oC

T ijk
o2,o1 T ijk

o2,o2 · · · T ijk
o2,oC

...
...

. . .
...

T ijk
oC ,o1 T ijk

oC ,o2 · · · T ijk
oC ,oC

 (3)

where each T ijk
o,o′ is the transition probability from the event

vij = o to vjk = o′ and
∑

o′∈O T
ijk
o,o′ = 1. With (1) and (3),

we write, in matrix form, the node-wise operation transitions
of G as

pjk =
∑j−1

i=0
βij × T ∗ijk × pij (4)

where T ∗ijk denotes the transpose of T ijk,
∑j−1

i=0 β
ij = 1 and

βij weighs, among the j ancestors, the influence of ancestor
vij to vjk. It is worth mentioning that the right-hand-side
of (4) is indeed the (accumulated) message passed from the
upstream parent nodes, and (4) is an efficient reduction of the
following message propagation:

pjk
t+1 = (1− λ)pjk

t + λ
∑j−1

i=0
βij × T ∗ijk × pij

t (5)

where 0 < λ < 1 is the update weight, t is the iteration
index and the reduction follows from the imposed information
propagation order given by the child-parent relations. During
the learning stage, we aim to solve the nested optimization
and learn only α(i,j) ∈ αI , where α(i,j) ∈ αI correspond to
those vij ∈ G′ without any ancestors. Their respective pij can
be readily computed via taking softmax over α(i,j) ∈ αI . All
the remaining pij fromG′ can be obtained via (4). In realizing
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Fig. 2: The distribution of models sampled from different priors. Left: Non-weighted priors construct by all models in the
NAS-Bench-201 space. Middle: Weighted priors construct by all models in the NAS-Bench-201 space. Right: Weighted priors
construct by 100 sampled models in the NAS-Bench-201 space.

the above steps, we still need an efficient way to decide the
parameters {βij , T ijk} in (4). Our approach treats them as
learnable parameters. To ensure the optimization leads to
stable NAS performance, we construct general priors of T ijk

from generic neural networks of good performance to provide
regularization constraints.

2.2. Transition matrix priors

Learning with prior regularization has the advantage of pre-
venting the optimization from straying to unexpected out-
comes. However, it also adds constraints to the optimization
and may hinder the model learning when using inappropriate
priors. Taking the two aspects into consideration, we adopt a
performance-driven strategy to prefer sampling good network
models from the search space of a NAS benchmark, detailed in
the experimental results, and use them to construct the priors.

Let P ijk be the prior matrix of the same size as the tran-
sition matrix T ijk. Performance-driven sampling is used to
repeatedly generate M models from the benchmark search
space. The prior matrices can be updated by

P ijk
oX ,oY =

∑
m
wm × 1[oijm = oX ∧ ojkm = oY ] (6)

where oX and oY are specific operations, wm is the weight
based on modelm’s performance and oijm denotes the operation
on edges (i, j) of model m. Upon the completion of sampling
for priors, we normalize P ijk to ensure each row sum to 1 .
In learning T ijk in (4), each transition matrix is initialized by
its prior P ijk and optimized with the additional regularization
term ‖T ijk − P ijk‖2.

3. EXPERIMENTS

3.1. Characteristic of priors

To fairly compare different settings and fast retrieve robust
results, we choose to analyze our algorithm on the NAS-Bench-
201 space [8]. It is a public benchmark for most of the NAS

algorithms. As a simplified version of the search space in cell-
based NAS, the cell contains 6 edges, 5 operations on each
edge, and a total 56 = 15625 models in the space. We first use
all models in the NAS-Bench-201 space and select top-quality
models based on their performances at 10th epoch, using (6)
(with weights being 1) and normalization to compute the priors.
To evaluate the quality of priors, we use the priors to sample
another 200 sets of models and observe their distribution. Fig-
ure 2 Left shows the distribution of models sampled from the
priors built with different ratios of top models. The models
sampled from top-25% priors perform better than the models
sampled from top-100% priors and the models with random
sampling significantly. It indicates that models sampled from
the prior constructed with better models tend to have better
performance.

To construct more robust priors, we weight models accord-
ing to their rank. To be more specific, we give better models
higher weights and worse models lower weights. Note that the
weights decay linearly from 1.5 to 0.5 across models. Also,
we sparsify the transition matrices to make low confidence
operations not be selected. Figure 2 Middle shows the results
with weighted priors, and both priors have advancements. The
top-100% priors improve significantly and perform similarly
as top-25% priors after weighted. Furthermore, this property
still holds even if we construct priors with few models. Fig-
ure 2 Right shows the results with the priors construct with
only 100 models. It suggests that with weighted and sparsifi-
cation, we can get equal quality priors under different ratio of
top models, and large amount of models for ranking is unnec-
essary. In a larger search space, priors may become sparser
and reduce the diversity of models to be searched. In this case
top-100% priors can make good use of all the sampled models
and provides reliable results.

3.2. CIFAR10 and ImageNet

We deploy our framework on DARTS-based methods on the
CIFAR10 dataset. With the concern of efficient searching, we
select the works with lower search costs such as DARTSV1



Architecture Test Err. Param. Search Cost
(%) (M) (GPU-days)

DARTSV1 [9] 3.00 ± 0.14 3.3 0.4
PC-DARTS [10] 2.67 ± 0.07 3.6 0.1
FairDARTS [7] 2.54 ± 0.05 3.32 0.4
MiLeNAS [11] 2.51 ± 0.11 3.87 0.3

SGAS [12] 2.66 ± 0.24 3.80 0.25

MAP-DARTSV1 2.70 ± 0.07 4.0 ± 0.27 0.4
MAP-PC-DARTS 2.53 ± 0.04 3.4 ± 0.36 0.1
MAP-PC-DARTS? 2.48 3.32 0.1

Table 1: Results of different architectures on CIFAR10. The
MAP module can be applied to various DARTS based methods.
(? the best result)

Architecture Test Err. Param. Costtop-1 top-5 (M)
PC-DARTS (CIFAR10) [10] 25.1 7.8 5.3 0.1
PC-DARTS (ImageNet) [10] 24.2 7.3 5.3 3.8

FairDARTS [7] 24.4 7.4 5.3 3
MiLeNAS (CIFAR10) [11] 24.7 7.6 5.3 0.3

SGAS (CIFAR10) [12] 24.1 7.3 5.4 0.25

MAP-PC-DARTS (CIFAR10) 23.8 7.0 5.8 0.1
MAP-PC-DARTS (ImageNet) 23.3 7.0 6.3 3.8

Table 2: Results of different architectures on ImageNet.

and PC-DARTS. Different from the original algorithm, we re-
place architecture parameters with our dependency net, which
contains trainable αI and transition matrices. To construct
priors for initializing the transition matrices, we sample 1000
models from DARTS search space and train each for 30 epochs
on CIFAR10. The priors can be construct following (6) with
wm = 1.5−ranking(m)/1000 and a sparsification threshold
of 0.1 after normalization. The results are shown in Table 1.
We report the mean and standard deviation testing error of
5 individual runs. Benefit from the MAP, we got a better
architecture compared with previous works.

In our experiments on ImageNet, we use the priors con-
structed on CIFAR10. The supernet training also follows the
setting of PC-DARTS and the details can be found in Appendix
Training details. The performances of our approach are shown
in Table 2. Note that the architectures searched on CIFAR10
and ImageNet itself are both evaluated. The model searched
on CIFAR10 is used to assess the transferability of our method.
We can observe that MAP-PC-DARTS attained state-of-the-art
results in both settings.

warm-up/total epoch 0/0 5/10 15/50
PC-DARTS - 4.28 2.67

MAP-PC-DARTS 2.77 2.71 2.53

Table 3: Results (in error rate) of different searching epoch
settings on CIFAR10.

4. DISCUSSION

4.1. Priors properties analysis

We discuss whether priors can accelerate searching. Table 3
shows the results of PC-DARTS and MAP-PC-DARTS under
different searching settings. We use A/B to denote warm-
up epochs/total epochs. In the 0/0 case, PC-DARTS has no
meaningful results without training, but MAP-PC-DARTS can
derive a model with only 2.77% error rate. In the 5/10 case,
MAP-PC-DARTS continues to improve the results, while PC-
DARTS still does not find better architecture. In general, with
the knowledge provided by priors, we can accelerate NAS and
meanwhile obtain reliable results.

4.2. Transferability

In the experiments on ImageNet, we observe a good transfer-
ability on both the searched model and the priors from CIFAR
dataset. It suggests that good architectures can perform well
across different dataset. This observation is consistent with
the previous work [13] and increase the reusability of priors.
Moreover, we can construct priors with a smaller dataset and
transfer them to a larger dataset to boost the searching process.

5. CONCLUSIONS

We tackle the problem of network architecture search by seek-
ing a maximum a posteriori (MAP) estimate to the optimal
target architecture. The proposed approach builds upon the
continuous relaxation of the DARTS model and demonstrate
its usefulness with satisfactory performance on benchmark
datasets and reliable reasoning for locating the target archi-
tecture. A notable idea of our method is to focus on learning
the node-wise transition matrices of network operations rather
than the network parameters, which enable the proposed NAS
technique bypasses the coupling dilemma caused by sharing
network parameters over various architectures in the one-shot
supernet. Our method brings a new paradigm to NAS in the
real world that when we meet a new dataset, we can first sam-
ple some models as a “probe” into the search space, and then
the rough results can help us guide the search process. Further-
more, the prior can reuse multiple times, which can become
a feature of the AutoML service and reduce the cost to get
reliable results. Our future work will focus on extending the
MAP formulation to other non-DARTS NAS approaches.



6. REFERENCES

[1] Barret Zoph and Quoc V. Le, “Neural architecture search
with reinforcement learning,” in 5th International Con-
ference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceed-
ings, 2017.

[2] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le, “NAS-
FPN: learning scalable feature pyramid architecture for
object detection,” in IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019. 2019, pp. 7036–7045, Com-
puter Vision Foundation / IEEE.

[3] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan L. Yuille, and Fei-Fei Li, “Auto-
DeepLab: hierarchical neural architecture search for se-
mantic image segmentation,” in IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019. 2019, pp. 82–
92, Computer Vision Foundation / IEEE.

[4] Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Gir-
shick, Kaiming He, and Piotr Dollár, “Designing network
design spaces,” CoRR, vol. abs/2003.13678, 2020.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-
30, 2016. 2016, pp. 770–778, IEEE Computer Society.

[6] Mark Sandler, Andrew G. Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen, “MobileNetV2:
inverted residuals and linear bottlenecks,” in 2018 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
2018, pp. 4510–4520.

[7] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang
Li, “Fair DARTS: eliminating unfair advantages in differ-
entiable architecture search,” CoRR, vol. abs/1911.12126,
2019.

[8] Xuanyi Dong and Yi Yang, “NAS-Bench-201: extending
the scope of reproducible neural architecture search,” in
8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. 2020, OpenReview.net.

[9] Hanxiao Liu, Karen Simonyan, and Yiming Yang,
“DARTS: differentiable architecture search,” in 7th Inter-
national Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[10] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-
Jun Qi, Qi Tian, and Hongkai Xiong, “PC-DARTS:
partial channel connections for memory-efficient differ-
entiable architecture search,” CoRR, vol. abs/1907.05737,
2019.

[11] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang,
“Milenas: Efficient neural architecture search via mixed-
level reformulation,” in 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020. 2020, pp. 11990–
11999, IEEE.

[12] Guohao Li, Guocheng Qian, Itzel C. Delgadillo, Matthias
Müller, Ali K. Thabet, and Bernard Ghanem, “SGAS: se-
quential greedy architecture search,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020, 2020,
pp. 1617–1627.

[13] Chenxi Liu, Piotr Dollár, Kaiming He, Ross B. Girshick,
Alan L. Yuille, and Saining Xie, “Are labels necessary for
neural architecture search?,” CoRR, vol. abs/2003.12056,
2020.


	 Introduction
	 Our Method
	 MAP-DARTS
	 Transition matrix priors

	 Experiments
	 Characteristic of priors
	 CIFAR10 and ImageNet

	 Discussion
	 Priors properties analysis
	 Transferability

	 Conclusions
	 References

